Module:table: Difference between revisions

m
1 revision imported
No edit summary
m (1 revision imported)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
--[[
local export = {}
------------------------------------------------------------------------------------
--                      table (formerly TableTools)                              --
--                                                                                --
-- This module includes a number of functions for dealing with Lua tables.        --
-- It is a meta-module, meant to be called from other Lua modules, and should    --
-- not be called directly from #invoke.                                          --
------------------------------------------------------------------------------------
--]]


--[[
--[==[ intro:
Inserting new values into a table using a local "index" variable, which is
This module provides functions for dealing with Lua tables. All of them, except for two helper functions, take a table
incremented each time, is faster than using "table.insert(t, x)" or
as their first argument.
"t[#t + 1] = x". See the talk page.
]]


local libraryUtil = require('libraryUtil')
Some functions are available as methods in the arrays created by [[Module:array]].


local export = {}
Functions by what they do:
* Create a new table:
** `shallowCopy`, `deepCopy`, `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`, `invert`, `listToSet`
* Create an array:
** `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`
* Return information about the table:
** `size`, `length`, `contains`, `isArray`, `deepEquals`
* Treat the table as an array (that is, operate on the values in the array portion of the table: values indexed by
  consecutive integers starting at {1}):
** `removeDuplicates`, `length`, `contains`, `serialCommaJoin`, `reverseIpairs`, `reverse`, `invert`, `listToSet`, `isArray`
* Treat a table as a sparse array (that is, operate on values indexed by non-consecutive integers):
** `numKeys`, `maxIndex`, `compressSparseArray`, `sparseConcat`, `sparseIpairs`
* Generate an iterator:
** `sparseIpairs`, `sortedPairs`, `reverseIpairs`
* Other functions:
** `sparseConcat`, `serialCommaJoin`, `reverseConcat`


-- Define often-used variables and functions.
The original version was a copy of {{w|Module:TableTools}} on Wikipedia via [[c:Module:TableTools|Module:TableTools]] on
local floor = math.floor
Commons, but in the course of time this module has been almost completely rewritten, with many new functions added. The
local infinity = math.huge
main legacy of this is the use of camelCase for function names rather than snake_case, as is normal in the English
local checkType = libraryUtil.checkType
Wiktionary.
local checkTypeMulti = libraryUtil.checkTypeMulti
]==]


local function _check(funcName, expectType)
local load_module = "Module:load"
if type(expectType) == "string" then
local math_module = "Module:math"
return function(argIndex, arg, nilOk)
checkType(funcName, argIndex, arg, expectType, nilOk)
end
else
return function(argIndex, arg, expectType, nilOk)
if type(expectType) == "table" then
checkTypeMulti(funcName, argIndex, arg, expectType, nilOk)
else
checkType(funcName, argIndex, arg, expectType, nilOk)
end
end
end
end


--[[
local table = table
------------------------------------------------------------------------------------
-- isPositiveInteger
--
-- This function returns true if the given value is a positive integer, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a given table key is in the array part or the
-- hash part of a table.
------------------------------------------------------------------------------------
--]]
function export.isPositiveInteger(v)
return type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity
end


--[[
local concat = table.concat
------------------------------------------------------------------------------------
local dump = mw.dumpObject
-- isNan
local ipairs = ipairs
--
local ipairs_default_iter = ipairs{export}
-- This function returns true if the given number is a NaN value, and false
local next = next
-- if not. Although it doesn't operate on tables, it is included here as it is
local pairs = pairs
-- useful for determining whether a value can be a valid table key. Lua will
local require = require
-- generate an error if a NaN is used as a table key.
local select = select
------------------------------------------------------------------------------------
local signed_index -- defined as export.signedIndex
--]]
local table_len -- defined as export.length
function export.isNan(v)
local type = type
if type(v) == 'number' and tostring(v) == '-nan' then
return true
else
return false
end
end


--[[
--[==[
------------------------------------------------------------------------------------
Loaders for functions in other modules, which overwrite themselves with the target function when called. This ensures modules are only loaded when needed, retains the speed/convenience of locally-declared pre-loaded functions, and has no overhead after the first call, since the target functions are called directly in any subsequent calls.]==]
-- shallowClone
local function is_integer(...)
--
is_integer = require(math_module).is_integer
-- This returns a clone of a table. The value returned is a new table, but all
return is_integer(...)
-- subtables and functions are shared. Metamethods are respected, but the returned
-- table will have no metatable of its own.
------------------------------------------------------------------------------------
--]]
function export.shallowClone(t)
local ret = {}
for k, v in pairs(t) do
ret[k] = v
end
return ret
end
end


--[[
local function safe_require(...)
Shallow copy
safe_require = require(load_module).safe_require
]]
return safe_require(...)
function export.shallowcopy(orig)
local orig_type = type(orig)
local copy
if orig_type == 'table' then
copy = {}
for orig_key, orig_value in pairs(orig) do
copy[orig_key] = orig_value
end
else -- number, string, boolean, etc
copy = orig
end
return copy
end
end


--[[
--[==[
Recursive deep copy function
Given an array and a signed index, returns the true table index. If the signed index is negative, the array will be counted from the end, where {-1} is the highest index in the array; otherwise, the returned index will be the same. To aid optimization, the first argument may be a number representing the array length instead of the array itself; this is useful when the array length is already known, as it avoids recalculating it each time this function is called.]==]
Equivalent to mw.clone?
function export.signedIndex(t, k)
]]
if not is_integer(k) then
local function deepcopy(orig, includeMetatable, already_seen)
error("index must be an integer")
-- Stores copies of tables indexed by the original table.
already_seen = already_seen or {}
local copy = already_seen[orig]
if copy ~= nil then
return copy
end
end
return k < 0 and (type(t) == "table" and table_len(t) or t) + k + 1 or k
if type(orig) == 'table' then
copy = {}
for orig_key, orig_value in pairs(orig) do
copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen)
end
already_seen[orig] = copy
if includeMetatable then
local mt = getmetatable(orig)
if mt ~= nil then
local mt_copy = deepcopy(mt, includeMetatable, already_seen)
setmetatable(copy, mt_copy)
end
end
else -- number, string, boolean, etc
copy = orig
end
return copy
end
end
signed_index = export.signedIndex


function export.deepcopy(orig, noMetatable, already_seen)
--[==[
checkType("deepcopy", 3, already_seen, "table", true)
An iterator which works like `pairs`, but ignores any `__pairs` metamethod.]==]
function export.rawPairs(t)
return deepcopy(orig, not noMetatable, already_seen)
return next, t, nil
end
end


--[[
--[==[
------------------------------------------------------------------------------------
An iterator which works like `ipairs`, but ignores any `__ipairs` metamethod.]==]
-- append
function export.rawIpairs(t)
--
return ipairs_default_iter, t, 0
-- This appends two tables together and returns the result. Compare the Lisp
-- expression (append list1 list2).
------------------------------------------------------------------------------------
--]]
function export.append(t1, t2)
checkType('append', 1, t1, 'table')
checkType('append', 2, t2, 'table')
local ret = {}
for _, v in ipairs(t1) do
table.insert(ret, v)
end
for _, v in ipairs(t2) do
table.insert(ret, v)
end
return ret
end
end


--[[
--[==[
------------------------------------------------------------------------------------
This returns the length of a table, or the first integer key n counting from 1 such that t[n + 1] is nil. It is a more reliable form of the operator `#`, which can become unpredictable under certain circumstances due to the implementation of tables under the hood in Lua, and therefore should not be used when dealing with arbitrary tables. `#` also does not use metamethods, so will return the wrong value in cases where it is desirable to take these into account (e.g. data loaded via `mw.loadData`). If `raw` is set, then metamethods will be ignored, giving the true table length.
-- removeDuplicates
--
-- This removes duplicate values from an array. Non-positive-integer keys are
-- ignored. The earliest value is kept, and all subsequent duplicate values are
-- removed, but otherwise the array order is unchanged.
------------------------------------------------------------------------------------
--]]
function export.removeDuplicates(t)
checkType('removeDuplicates', 1, t, 'table')
local isNan = export.isNan
local ret, exists = {}, {}
local index = 1
for _, v in ipairs(t) do
if isNan(v) then
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
ret[index] = v
index = index + 1
else
if not exists[v] then
ret[index] = v
index = index + 1
exists[v] = true
end
end
end
return ret
end


--[[
For arrays, this function is faster than `export.size`.]==]
------------------------------------------------------------------------------------
function export.length(t, raw)
-- numKeys
local n = 0
--
if raw then
-- This takes a table and returns an array containing the numbers of any numerical
for i in ipairs_default_iter, t, 0 do
-- keys that have non-nil values, sorted in numerical order.
n = i
------------------------------------------------------------------------------------
--]]
function export.numKeys(t, checked)
if not checked then
checkType('numKeys', 1, t, 'table')
end
local isPositiveInteger = export.isPositiveInteger
local nums = {}
local index = 1
for k, _ in pairs(t) do
if isPositiveInteger(k) then
nums[index] = k
index = index + 1
end
end
return n
end
end
table.sort(nums)
repeat
return nums
n = n + 1
until t[n] == nil
return n - 1
end
end
table_len = export.length


function export.maxIndex(t)
local function getIteratorValues(i, j , step, t_len)
checkType('maxIndex', 1, t, 'table')
i, j = i and signed_index(t_len, i), j and signed_index(t_len, j)
local positiveIntegerKeys = export.numKeys(t)
if step == nil then
if positiveIntegerKeys[1] then
i, j = i or 1, j or t_len
return math.max(unpack(positiveIntegerKeys))
return i, j, j < i and -1 or 1
else
elseif step == 0 or not is_integer(step) then
return 0 -- ???
error("step must be a non-zero integer")
elseif step < 0 then
return i or t_len, j or 1, step
end
end
return i or 1, j or t_len, step
end
end


--[[
--[==[
------------------------------------------------------------------------------------
Given an array `list` and function `func`, iterate through the array applying {func(r, k, v)}, and returning the result,
-- affixNums
where `r` is the value calculated so far, `k` is an index, and `v` is the value at index `k`. For example,
--
{reduce(array, function(a, _, v) return a + v end)} will return the sum of `array`.
-- This takes a table and returns an array containing the numbers of keys with the
-- specified prefix and suffix.
-- affixNums({a1 = 'foo', a3 = 'bar', a6 = 'baz'}, "a")
-- ↓
-- {1, 3, 6}.
------------------------------------------------------------------------------------
--]]
function export.affixNums(t, prefix, suffix)
local check = _check('affixNums')
check(1, t, 'table')
check(2, prefix, 'string', true)
check(3, suffix, 'string', true)
local function cleanPattern(s)
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
return s
end
prefix = prefix or ''
suffix = suffix or ''
prefix = cleanPattern(prefix)
suffix = cleanPattern(suffix)
local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$'
local nums = {}
local index = 1
for k, _ in pairs(t) do
if type(k) == 'string' then
local num = mw.ustring.match(k, pattern)
if num then
nums[index] = tonumber(num)
index = index + 1
end
end
end
table.sort(nums)
return nums
end


--[[
Optional arguments:
------------------------------------------------------------------------------------
* `i`: start index; negative values count from the end of the array
-- numData
* `j`: end index; negative values count from the end of the array
--
* `step`: step increment
-- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
-- of subtables in the format
backwards and by how much, based on these inputs (see examples below for default behaviours).
-- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
-- Keys that don't end with an integer are stored in a subtable named "other".
-- The compress option compresses the table so that it can be iterated over with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function export.numData(t, compress)
local check = _check('numData')
check(1, t, 'table')
check(2, compress, 'boolean', true)
local ret = {}
for k, v in pairs(t) do
local prefix, num = tostring(k):match('^([^0-9]*)([1-9][0-9]*)$')
if num then
num = tonumber(num)
local subtable = ret[num] or {}
if prefix == '' then
-- Positional parameters match the blank string; put them at the start of the subtable instead.
prefix = 1
end
subtable[prefix] = v
ret[num] = subtable
else
local subtable = ret.other or {}
subtable[k] = v
ret.other = subtable
end
end
if compress then
local other = ret.other
ret = export.compressSparseArray(ret)
ret.other = other
end
return ret
end


--[[
Examples:
------------------------------------------------------------------------------------
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
-- compressSparseArray
# step=-1 results in backward iteration from the end to the start in steps of 1.
--
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
-- This takes an array with one or more nil values, and removes the nil values
# j=-3 results in forward iteration from the start to the 3rd last index.
-- while preserving the order, so that the array can be safely traversed with
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
-- ipairs.
function export.reduce(t, func, i, j, step)
------------------------------------------------------------------------------------
i, j, step = getIteratorValues(i, j, step, table_len(t))
--]]
local ret = t[i]
function export.compressSparseArray(t)
for k = i + step, j, step do
checkType('compressSparseArray', 1, t, 'table')
ret = func(ret, k, t[k])
local ret = {}
local index = 1
local nums = export.numKeys(t)
for _, num in ipairs(nums) do
ret[index] = t[num]
index = index + 1
end
end
return ret
return ret
end
end


--[[
do
------------------------------------------------------------------------------------
local function replace(t, func, i, j, step, generate)
-- sparseIpairs
local t_len = table_len(t)
--
-- Normalized i, j and step, based on the inputs.
-- This is an iterator for sparse arrays. It can be used like ipairs, but can
local norm_i, norm_j, norm_step = getIteratorValues(i, j, step, t_len)
-- handle nil values.
if norm_step > 0 then
------------------------------------------------------------------------------------
i, j, step = 1, t_len, 1
--]]
function export.sparseIpairs(t)
checkType('sparseIpairs', 1, t, 'table')
local nums = export.numKeys(t)
local i = 0
return function()
i = i + 1
local key = nums[i]
if key then
return key, t[key]
else
else
return nil, nil
i, j, step = t_len, 1, -1
end
-- "Signed" variables are multiplied by -1 if `step` is negative.
local t_new, signed_i, signed_j = generate and {} or t, norm_i * step, norm_j * step
for k = i, j, step do
-- Replace the values iff they're within the i to j range and `step` wouldn't skip the key.
-- Note: i > j if `step` is positive; i < j if `step` is negative. Otherwise, the range is empty.
local signed_k = k * step
if signed_k >= signed_i and signed_k <= signed_j and (k - norm_i) % norm_step == 0 then
t_new[k] = func(k, t[k])
-- Otherwise, add the existing value if `generate` is set.
elseif generate then
t_new[k] = t[k]
end
end
end
return t_new
end
end
end


--[[
--[==[
------------------------------------------------------------------------------------
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
-- size
`v` is the value at index `k`), replacing the relevant values with the result. For example,
--
{apply(array, function(_, v) return 2 * v end)} will double each member of the array.
-- This returns the size of a key/value pair table. It will also work on arrays,
 
-- but for arrays it is more efficient to use the # operator.
Optional arguments:
------------------------------------------------------------------------------------
* `i`: start index; negative values count from the end of the array
--]]
* `j`: end index; negative values count from the end of the array
function export.size(t)
* `step`: step increment
checkType('size', 1, t, 'table')
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
local i = 0
backwards and by how much, based on these inputs (see examples below for default behaviours).
for _ in pairs(t) do
 
i = i + 1
Examples:
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.apply(t, func, i, j, step)
return replace(t, func, i, j, step, false)
end
end
return i
end


--[[
--[==[
-- This returns the length of a table, or the first integer key n counting from
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
-- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return
`v` is the value at index `k`), and return a shallow copy of the original array with the relevant values replaced. For example,
-- a different value when there are gaps in the array portion of the table.
{generate(array, function(_, v) return 2 * v end)} will return a new array in which each value has been doubled.
-- Intended to be used on data loaded with mw.loadData. For other tables, use #.
--]]
function export.length(t)
local i = 0
repeat
i = i + 1
until t[i] == nil
return i - 1
end


--[[
Optional arguments:
Recursively compare two values that may be tables, including tables with
* `i`: start index; negative values count from the end of the array
nested tables as values. Return true if both values are structurally equal.
* `j`: end index; negative values count from the end of the array
Note that this handles arbitary levels of nesting. If all tables are known
* `step`: step increment
to be lists (with only integral keys), use export.deepEqualsList, which will
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
be more efficient.
backwards and by how much, based on these inputs (see examples below for default behaviours).


NOTE: This is *NOT* smart enough to properly handle cycles; in such a case, it
Examples:
will get into an infinite loop.
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
]]
# step=-1 results in backward iteration from the end to the start in steps of 1.
function export.deepEquals(x, y)
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
if type(x) == "table" and type(y) == "table" then
# j=-3 results in forward iteration from the start to the 3rd last index.
-- Two tables are the same if they have the same number of elements
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
-- and all keys that are present in one of the tables compare equal
function export.generate(t, func, i, j, step)
-- to the corresponding keys in the other table, using structural
return replace(t, func, i, j, step, true)
-- comparison.
local sizex = 0
for key, value in pairs(x) do
if not export.deepEquals(value, y[key]) then
return false
end
sizex = sizex + 1
end
local sizey = export.size(y)
if sizex ~= sizey then
return false
end
return true
end
end
return x == y
end
end


--[[
--[==[
Recursively compare two values that may be lists (i.e. tables with integral
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
keys), including lists with nested lists as values. Return true if both values
`v` is the value at index `k`), and returning whether the function is true for all iterations.
are structurally equal. Note that this handles arbitary levels of nesting.
Results are undefined if tables with non-integral keys are present anywhere in
either structure; if that may be the case, use export.deepEquals, which will
handle such tables correctly but be less efficient on lists than
export.deepEqualsList.


NOTE: This is *NOT* smart enough to properly handle cycles; in such a case, it
Optional arguments:
will get into an infinite loop.
* `i`: start index; negative values count from the end of the array
]]
* `j`: end index; negative values count from the end of the array
function export.deepEqualsList(x, y)
* `step`: step increment
if type(x) == "table" and type(y) == "table" then
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
if #x ~= #y then
backwards and by how much, based on these inputs (see examples below for default behaviours).
 
Examples:
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.all(t, func, i, j, step)
i, j, step = getIteratorValues(i, j, step, table_len(t))
for k = i, j, step do
if not func(k, t[k]) then
return false
return false
end
for key, value in ipairs(x) do
if not export.deepEqualsList(value, y[key]) then
return false
end
end
end
return true
end
end
return x == y
return true
end
end


--[[
--[==[
Given a list and a value to be found, return true if the value is in the array
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
portion of the list. Shallow comparison is used unless `deepCompare` is given
`v` is the value at index `k`), and returning whether the function is true for at least one iteration.
(in which case comparison is done using `deepEqualsList`).
 
]]
Optional arguments:
function export.contains(list, x, deepCompare)
* `i`: start index; negative values count from the end of the array
checkType('contains', 1, list, 'table')
* `j`: end index; negative values count from the end of the array
if deepCompare then
* `step`: step increment
for _, v in ipairs(list) do
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
if export.deepEqualsList(v, x) then return true end
backwards and by how much, based on these inputs (see examples below for default behaviours).
end
else
for _, v in ipairs(list) do
if v == x then return true end
end
end
return false
end


--[[
Examples:
Given a general table and a value to be found, return true if the value is in
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
either the array or hashmap portion of the table. Shallow comparison is used
# step=-1 results in backward iteration from the end to the start in steps of 1.
unless `deepCompare` is given (in which case comparison is done using
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
`deepEquals`).
# j=-3 results in forward iteration from the start to the 3rd last index.
]]
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.tableContains(tbl, x, deepCompare)
function export.any(t, func, i, j, step)
checkType('tableContains', 1, tbl, 'table')
i, j, step = getIteratorValues(i, j, step, table_len(t))
if deepCompare then
for k = i, j, step do
for _, v in pairs(tbl) do
if not not (func(k, t[k])) then
if export.deepEquals(v, x) then return true end
return true
end
else
for _, v in pairs(tbl) do
if v == x then return true end
end
end
end
end
Line 492: Line 265:
end
end


--[[
--[==[
Given a list and a value to be inserted, append or insert the value if not
Joins an array with serial comma and serial conjunction, normally {"and"}. An improvement on {mw.text.listToText},
already present in the list. Shallow comparison is used unless `deepCompare`
which doesn't properly handle serial commas.
is given (in which case comparison is done using `deepEqualsList`). Appends to
the end, like the default behavior of table.insert(), unless `pos` is given,
in which case insertion happens at position `pos` (i.e. before the existing
item at position `pos`).


NOTE: The order of `item` and `pos` is reversed in comparison to table.insert(),
Options:
which uses `table.insert(list, item)` to insert at the end but
* `conj`: Conjunction to use; defaults to {"and"}.
`table.insert(list, pos, item)` to insert at position POS.
* `punc`: Punctuation to use; default to {","}.
]]
* `dontTag`: Don't tag the serial comma and serial {"and"}. For error messages, in which HTML cannot be used.
-- append to list if element not already present
* `dump`: Each item will be serialized with {mw.dumpObject}. For warnings and error messages.]==]
function export.insertIfNot(list, item, pos, deepCompare)
function export.serialCommaJoin(seq, options)
if not export.contains(list, item, deepCompare) then
-- If the `dump` option is set, determine the table length as part of the
if pos then
-- dump loop, instead of calling `table_len` separately.
table.insert(list, pos, item)
local length
else
if options and options.dump then
table.insert(list, item)
local i, item = 1, seq[1]
if item ~= nil then
local dumped = {}
repeat
dumped[i] = dump(item)
i = i + 1
item = seq[i]
until item == nil
seq = dumped
end
end
length = i - 1
else
length = table_len(seq)
end
end
end


--[[
if length == 0 then
Finds key for specified value in a given table.
return ""
Roughly equivalent to reversing the key-value pairs in the table –
elseif length == 1 then
reversed_table = { [value1] = key1, [value2] = key2, ... }
return seq[1]
– and then returning reversed_table[valueToFind].
The value can only be a string or a number
(not nil, a boolean, a table, or a function).
Only reliable if there is just one key with the specified value.
Otherwise, the function returns the first key found,
and the output is unpredictable.
]]
function export.keyFor(t, valueToFind)
local check = _check('keyFor')
check(1, t, 'table')
check(2, valueToFind, { 'string', 'number' })
for key, value in pairs(t) do
if value == valueToFind then
return key
end
end
end
return nil
end


--[[
local conj = options and options.conj
The default sorting function used in export.keysToList if no keySort
if conj == nil then
is defined.
conj = "and"
]]
local function defaultKeySort(key1, key2)
-- "number" < "string", so numbers will be sorted before strings.
local type1, type2 = type(key1), type(key2)
if type1 ~= type2 then
return type1 < type2
else
return key1 < key2
end
end
end


--[[
if length == 2 then
Returns a list of the keys in a table, sorted using either the default
return seq[1] .. " " .. conj .. " " .. seq[2]
table.sort function or a custom keySort function.
If there are only numerical keys, numKeys is probably more efficient.
]]
function export.keysToList(t, keySort, checked)
if not checked then
local check = _check('keysToList')
check(1, t, 'table')
check(2, keySort, 'function', true)
end
local list = {}
local index = 1
for key, _ in pairs(t) do
list[index] = key
index = index + 1
end
-- Place numbers before strings, otherwise sort using <.
if not keySort then
keySort = defaultKeySort
end
table.sort(list, keySort)
return list
end
 
--[[
Iterates through a table, with the keys sorted using the keysToList function.
If there are only numerical keys, sparseIpairs is probably more efficient.
]]
function export.sortedPairs(t, keySort)
local check = _check('keysToList')
check(1, t, 'table')
check(2, keySort, 'function', true)
local list = export.keysToList(t, keySort, true)
local i = 0
return function()
i = i + 1
local key = list[i]
if key ~= nil then
return key, t[key]
else
return nil, nil
end
end
end
end


function export.reverseIpairs(list)
local punc, dont_tag
checkType('reverse_ipairs', 1, list, 'table')
if options then
punc = options.punc
local i = #list + 1
if punc == nil then
return function()
punc = ","
i = i - 1
if list[i] ~= nil then
return i, list[i]
else
return nil, nil
end
end
dont_tag = options.dontTag
else
punc = ","
end
end
end


--[=[
local comma
Joins an array with serial comma and serial conjunction, normally "and".
if dont_tag then
An improvement on mw.text.listToText, which doesn't properly handle serial
comma = "" -- since by default the serial comma doesn't display, when we can't tag we shouldn't display it.
commas.
conj = " " .. conj .. " "
Options:
- conj
Conjunction to use; defaults to "and".
- italicizeConj
Italicize conjunction: for [[Module:Template:also]]
- dontTag
Don't tag the serial comma and serial "and". For error messages, in
which HTML cannot be used.
]=]
function export.serialCommaJoin(seq, options)
local check = _check("serialCommaJoin", "table")
check(1, seq)
check(2, options, true)
local length = #seq
if not options then
options = {}
end
local conj
if length > 1 then
conj = options.conj or "and"
if options.italicizeConj then
conj = "''" .. conj .. "''"
end
end
if length == 0 then
return ""
elseif length == 1 then
return seq[1] -- nothing to join
elseif length == 2 then
return seq[1] .. " " .. conj .. " " .. seq[2]
else
else
local comma = options.dontTag and "," or '<span class="serial-comma">,</span>'
comma = "<span class=\"serial-comma\">" .. punc .. "</span>"
conj = options.dontTag and ' ' .. conj .. " " or '<span class="serial-and"> ' .. conj .. '</span> '
conj = "<span class=\"serial-and\"> " .. conj .. "</span> "
return table.concat(seq, ", ", 1, length - 1) ..
comma .. conj .. seq[length]
end
end
end


--[[
return concat(seq, punc .. " ", 1, length - 1) .. comma .. conj .. seq[length]
Concatenates all values in the table that are indexed by a number, in order.
sparseConcat{ a, nil, c, d }  =>  "acd"
sparseConcat{ nil, b, c, d }  =>  "bcd"
]]
function export.sparseConcat(t, sep, i, j)
local list = {}
local list_i = 0
for _, v in export.sparseIpairs(t) do
list_i = list_i + 1
list[list_i] = v
end
return table.concat(list, sep, i, j)
end
end


--[[
--[==[
Values of numberic keys in array portion of table are reversed:
A function which works like `table.concat`, but respects any `__index` metamethod. This is useful for data loaded via `mw.loadData`.]==]
{ "a", "b", "c" } -> { "c", "b", "a" }
function export.concat(t, sep, i, j)
--]]
local list, k = {}, 0
function export.reverse(t)
while true do
checkType("reverse", 1, t, "table")
k = k + 1
local v = t[k]
local new_t = {}
if v == nil then
local new_t_i = 1
return concat(list, sep, i, j)
for i = #t, 1, -1 do
end
new_t[new_t_i] = t[i]
list[k] = v
new_t_i = new_t_i + 1
end
end
return new_t
end
end


function export.reverseConcat(t, sep, i, j)
--[==[
return table.concat(export.reverse(t), sep, i, j)
Add a list of aliases for a given key to a table. The aliases must be given as a table.]==]
end
function export.alias(t, k, aliases)
 
for _, alias in pairs(aliases) do
-- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 }
t[alias] = t[k]
function export.invert(array)
checkType("invert", 1, array, "table")
local map = {}
for i, v in ipairs(array) do
map[v] = i
end
end
return map
end
end


--[[
local mt = {}
{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true }
--]]
function export.listToSet(t)
checkType("listToSet", 1, t, "table")
local set = {}
for _, item in ipairs(t) do
set[item] = true
end
return set
end


--[[
function mt:__index(k)
Returns true if all keys in the table are consecutive integers starting at 1.
local submodule = safe_require("Module:table/" .. k)
--]]
self[k] = submodule
function export.isArray(t)
return submodule
checkType("isArray", 1, t, "table")
local i = 0
for _ in pairs(t) do
i = i + 1
if t[i] == nil then
return false
end
end
return true
end
end


return export
return setmetatable(export, mt)