Module:table: Difference between revisions

From Linguifex
Jump to navigation Jump to search
No edit summary
m (1 revision imported)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
--[[
local export = {}
------------------------------------------------------------------------------------
--                      table (formerly TableTools)                              --
--                                                                                --
-- This module includes a number of functions for dealing with Lua tables.        --
-- It is a meta-module, meant to be called from other Lua modules, and should    --
-- not be called directly from #invoke.                                          --
------------------------------------------------------------------------------------
--]]


--[[
--[==[ intro:
Inserting new values into a table using a local "index" variable, which is
This module provides functions for dealing with Lua tables. All of them, except for two helper functions, take a table
incremented each time, is faster than using "table.insert(t, x)" or
as their first argument.
"t[#t + 1] = x". See the talk page.
]]


local export = {}
Some functions are available as methods in the arrays created by [[Module:array]].
 
Functions by what they do:
* Create a new table:
** `shallowCopy`, `deepCopy`, `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`, `invert`, `listToSet`
* Create an array:
** `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`
* Return information about the table:
** `size`, `length`, `contains`, `isArray`, `deepEquals`
* Treat the table as an array (that is, operate on the values in the array portion of the table: values indexed by
  consecutive integers starting at {1}):
** `removeDuplicates`, `length`, `contains`, `serialCommaJoin`, `reverseIpairs`, `reverse`, `invert`, `listToSet`, `isArray`
* Treat a table as a sparse array (that is, operate on values indexed by non-consecutive integers):
** `numKeys`, `maxIndex`, `compressSparseArray`, `sparseConcat`, `sparseIpairs`
* Generate an iterator:
** `sparseIpairs`, `sortedPairs`, `reverseIpairs`
* Other functions:
** `sparseConcat`, `serialCommaJoin`, `reverseConcat`
 
The original version was a copy of {{w|Module:TableTools}} on Wikipedia via [[c:Module:TableTools|Module:TableTools]] on
Commons, but in the course of time this module has been almost completely rewritten, with many new functions added. The
main legacy of this is the use of camelCase for function names rather than snake_case, as is normal in the English
Wiktionary.
]==]
 
local load_module = "Module:load"
local math_module = "Module:math"


local libraryUtil = require("libraryUtil")
local table = table
local table = table


local checkType = libraryUtil.checkType
local checkTypeMulti = libraryUtil.checkTypeMulti
local concat = table.concat
local concat = table.concat
local format = string.format
local dump = mw.dumpObject
local getmetatable = getmetatable
local insert = table.insert
local ipairs = ipairs
local ipairs = ipairs
local is_callable = require("Module:fun").is_callable
local ipairs_default_iter = ipairs{export}
local is_positive_integer -- defined as export.isPositiveInteger below
local keys_to_list -- defined as export.keysToList below
local next = next
local next = next
local pairs = pairs
local pairs = pairs
local rawequal = rawequal
local require = require
local rawget = rawget
local select = select
local setmetatable = setmetatable
local signed_index -- defined as export.signedIndex
local sort = table.sort
local table_len -- defined as export.length
local string_sort = require("Module:collation").string_sort
local type = type
local type = type


local infinity = math.huge
--[==[
 
Loaders for functions in other modules, which overwrite themselves with the target function when called. This ensures modules are only loaded when needed, retains the speed/convenience of locally-declared pre-loaded functions, and has no overhead after the first call, since the target functions are called directly in any subsequent calls.]==]
local function _check(funcName, expectType)
local function is_integer(...)
if type(expectType) == "string" then
is_integer = require(math_module).is_integer
return function(argIndex, arg, nilOk)
return is_integer(...)
checkType(funcName, argIndex, arg, expectType, nilOk)
end
else
return function(argIndex, arg, expectType, nilOk)
if type(expectType) == "table" then
if not nilOk or arg ~= nil then
-- checkTypeMulti() doesn't accept a fifth `nilOk` argument, unlike the other check functions.
checkTypeMulti(funcName, argIndex, arg, expectType)
end
else
checkType(funcName, argIndex, arg, expectType, nilOk)
end
end
end
end
end


--[==[
local function safe_require(...)
Return true if the given value is a positive integer, and false if not. Although it doesn't operate on tables, it is
safe_require = require(load_module).safe_require
included here as it is useful for determining whether a given table key is in the array part or the hash part of a
return safe_require(...)
table.
]==]
function export.isPositiveInteger(v)
return type(v) == "number" and v >= 1 and v % 1 == 0 and v < infinity
end
end
is_positive_integer = export.isPositiveInteger


--[==[
--[==[
Return a clone of an object. If the object is a table, the value returned is a new table, but all subtables and functions are shared. Metamethods are respected, but the returned table will have no metatable of its own.
Given an array and a signed index, returns the true table index. If the signed index is negative, the array will be counted from the end, where {-1} is the highest index in the array; otherwise, the returned index will be the same. To aid optimization, the first argument may be a number representing the array length instead of the array itself; this is useful when the array length is already known, as it avoids recalculating it each time this function is called.]==]
]==]
function export.signedIndex(t, k)
function export.shallowcopy(orig)
if not is_integer(k) then
if type(orig) ~= "table" then
error("index must be an integer")
return orig
end
local copy = {}
for k, v in pairs(orig) do
copy[k] = v
end
end
return copy
return k < 0 and (type(t) == "table" and table_len(t) or t) + k + 1 or k
end
end
signed_index = export.signedIndex


do
--[==[
local function rawpairs(t)
An iterator which works like `pairs`, but ignores any `__pairs` metamethod.]==]
return next, t
function export.rawPairs(t)
end
return next, t, nil
 
local function make_copy(orig, memo, mt_flag, keep_loaded_data)
if type(orig) ~= "table" then
return orig
end
local memoized = memo[orig]
if memoized ~= nil then
return memoized
end
local mt = getmetatable(orig)
local loaded_data = mt and mt.mw_loadData
if loaded_data and keep_loaded_data then
memo[orig] = orig
return orig
end
local copy = {}
memo[orig] = copy
for k, v in (loaded_data and pairs or rawpairs)(orig) do
copy[make_copy(k, memo, mt_flag, keep_loaded_data)] = make_copy(v, memo, mt_flag, keep_loaded_data)
end
if loaded_data then
return copy
elseif mt_flag == "keep" then
setmetatable(copy, mt)
elseif mt_flag ~= "none" then
setmetatable(copy, make_copy(mt, memo, mt_flag, keep_loaded_data))
end
return copy
end
 
--[==[
Recursive deep copy function. Preserves copied identities of subtables.
A more powerful version of {mw.clone}, with customizable options.
* By default, metatables are copied, except for data loaded via mw.loadData (see below). If `metatableFlag` is set to "none", the copy will not have any metatables at all. Conversely, if `metatableFlag` is set to "keep", then the cloned table (and all its members) will have the exact same metatable as their original version.
* If `keepLoadedData` is true, then any data loaded via {mw.loadData} will not be copied, and the original will be used instead. This is useful in iterative contexts where it is necessary to copy data being destructively modified, because objects loaded via mw.loadData are immutable.
* Notes:
*# Protected metatables will not be copied (i.e. those hidden behind a __metatable metamethod), as they are not
  accessible by Lua's design. Instead, the output of the __metatable method will be used instead.
*# When iterating over the table, the __pairs metamethod is ignored, since this can prevent the table from being properly cloned.
*# Data loaded via mw.loadData is a special case in two ways: the metatable is stripped, because otherwise the cloned table throws errors when accessed; in addition, the __pairs metamethod is used, since otherwise the cloned table would be empty.]==]
function export.deepcopy(orig, metatableFlag, keepLoadedData)
return make_copy(orig, {}, metatableFlag, keepLoadedData)
end
end
end


--[==[
--[==[
Append any number of tables together and returns the result. Compare the Lisp expression {(append list1 list2 ...)}.
An iterator which works like `ipairs`, but ignores any `__ipairs` metamethod.]==]
]==]
function export.rawIpairs(t)
function export.append(...)
return ipairs_default_iter, t, 0
local ret, n = {}, 0
for i = 1, arg.n do
for _, v in ipairs(arg[i]) do
n = n + 1
ret[n] = v
end
end
return ret
end
end


--[==[
--[==[
Extend an existing list by a new list, modifying the existing list in-place. Compare the Python expression
This returns the length of a table, or the first integer key n counting from 1 such that t[n + 1] is nil. It is a more reliable form of the operator `#`, which can become unpredictable under certain circumstances due to the implementation of tables under the hood in Lua, and therefore should not be used when dealing with arbitrary tables. `#` also does not use metamethods, so will return the wrong value in cases where it is desirable to take these into account (e.g. data loaded via `mw.loadData`). If `raw` is set, then metamethods will be ignored, giving the true table length.
{list.extend(new_items)}.


`options` is an optional table of additional options to control the behavior of the operation. The following options are
For arrays, this function is faster than `export.size`.]==]
recognized:
function export.length(t, raw)
* `insertIfNot`: Use {export.insertIfNot()} instead of {table.insert()}, which ensures that duplicate items do not get
local n = 0
  inserted (at the cost of an O((M+N)*N) operation, where M = #list and N = #new_items).
if raw then
* `key`: As in {insertIfNot()}. Ignored otherwise.
for i in ipairs_default_iter, t, 0 do
* `pos`: As in {insertIfNot()}. Ignored otherwise.
n = i
]==]
function export.extendList(list, new_items, options)
local check = _check("extendList", "table")
check(1, list)
check(2, new_items)
check(3, options, true)
for _, item in ipairs(new_items) do
if options and options.insertIfNot then
export.insertIfNot(list, item, options)
else
insert(list, item)
end
end
return n
end
end
repeat
n = n + 1
until t[n] == nil
return n - 1
end
end
table_len = export.length


--[==[
local function getIteratorValues(i, j , step, t_len)
Remove duplicate values from an array. Non-positive-integer keys are ignored. The earliest value is kept, and all subsequent duplicate values are removed, but otherwise the array order is unchanged.
i, j = i and signed_index(t_len, i), j and signed_index(t_len, j)
-- -0, NaN and -NaN have special handling, as they can't be used as table keys.
if step == nil then
]==]
i, j = i or 1, j or t_len
function export.removeDuplicates(t)
return i, j, j < i and -1 or 1
checkType("removeDuplicates", 1, t, "table")
elseif step == 0 or not is_integer(step) then
local ret, n, seen, _neg_0, _pos_nan, _neg_nan = {}, 0, {}
error("step must be a non-zero integer")
for _, v in ipairs(t) do
elseif step < 0 then
local v_key = v
return i or t_len, j or 1, step
-- -0
if v == 0 and 1 / v < 0 then
_neg_0 = _neg_0 or {}
v_key = _neg_0
-- NaN and -NaN.
elseif v ~= v then
if format("%f", v) == "nan" then
_pos_nan = _pos_nan or {}
v_key = _pos_nan
else
_neg_nan = _neg_nan or {}
v_key = _neg_nan
end
end
if not seen[v_key] then
n = n + 1
ret[n] = v
seen[v_key] = true
end
end
end
return ret
return i or 1, j or t_len, step
end
end


--[==[
--[==[
Given a table, return an array containing the numbers of any numerical keys that have non-nil values, sorted in
Given an array `list` and function `func`, iterate through the array applying {func(r, k, v)}, and returning the result,
numerical order.
where `r` is the value calculated so far, `k` is an index, and `v` is the value at index `k`. For example,
]==]
{reduce(array, function(a, _, v) return a + v end)} will return the sum of `array`.
function export.numKeys(t, checked)
if not checked then
checkType("numKeys", 1, t, "table")
end
local nums = {}
local index = 1
for k in pairs(t) do
if is_positive_integer(k) then
nums[index] = k
index = index + 1
end
end
sort(nums)
return nums
end


--[==[
Optional arguments:
Return the maximum index of a table or array that possibly has holes in it, or 0 if there are no numerical keys in the
* `i`: start index; negative values count from the end of the array
table.
* `j`: end index; negative values count from the end of the array
]==]
* `step`: step increment
function export.maxIndex(t)
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
local max = 0
backwards and by how much, based on these inputs (see examples below for default behaviours).
for k in pairs(t) do
if is_positive_integer(k) and k > max then
max = k
end
end
return max
end


--[==[
Examples:
This takes an array with one or more nil values, and removes the nil values
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
while preserving the order, so that the array can be safely traversed with
# step=-1 results in backward iteration from the end to the start in steps of 1.
ipairs.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
]==]
# j=-3 results in forward iteration from the start to the 3rd last index.
function export.compressSparseArray(t)
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
checkType("compressSparseArray", 1, t, "table")
function export.reduce(t, func, i, j, step)
local ret = {}
i, j, step = getIteratorValues(i, j, step, table_len(t))
local index = 1
local ret = t[i]
local nums = export.numKeys(t)
for k = i + step, j, step do
for _, num in ipairs(nums) do
ret = func(ret, k, t[k])
ret[index] = t[num]
index = index + 1
end
end
return ret
return ret
end
end
--[==[
This is an iterator for sparse arrays. It can be used like ipairs, but can handle nil values.
]==]
function export.sparseIpairs(t)
checkType("sparseIpairs", 1, t, "table")
local nums = export.numKeys(t)
local i = 0
return function()
i = i + 1
local key = nums[i]
if key then
return key, t[key]
else
return nil, nil
end
end
end
--[==[
This returns the size of a key/value pair table. It will also work on arrays, but for arrays it is more efficient to
use the # operator.
]==]
function export.size(t)
checkType("size", 1, t, "table")
local i = 0
for _ in pairs(t) do
i = i + 1
end
return i
end
--[==[
This returns the length of a table, or the first integer key n counting from 1 such that t[n + 1] is nil. It is similar to the operator #, but may return a different value when metamethods are involved. Intended to be used on data loaded with mw.loadData. For other tables, use #.
]==]
function export.length(t)
local i = 0
repeat
i = i + 1
until t[i] == nil
return i - 1
end


do
do
local function is_equivalent(a, b, memo, include_mt)
local function replace(t, func, i, j, step, generate)
-- Raw equality check.
local t_len = table_len(t)
if rawequal(a, b) then
-- Normalized i, j and step, based on the inputs.
return true
local norm_i, norm_j, norm_step = getIteratorValues(i, j, step, t_len)
-- If not equal, a and b can only be equivalent if they're both tables.
if norm_step > 0 then
elseif not (type(a) == "table" and type(b) == "table") then
i, j, step = 1, t_len, 1
return false
end
-- If a and b have been compared before, they must be equivalent.
local memo_a = memo[a]
if not memo_a then
memo[a] = {[b] = true}
elseif memo_a[b] then
return true
else
else
memo_a[b] = true
i, j, step = t_len, 1, -1
end
end
local memo_b = memo[b]
-- "Signed" variables are multiplied by -1 if `step` is negative.
if not memo_b then
local t_new, signed_i, signed_j = generate and {} or t, norm_i * step, norm_j * step
memo[b] = {[a] = true}
for k = i, j, step do
else -- We know memo_b won't have a, since memo_a didn't have b.
-- Replace the values iff they're within the i to j range and `step` wouldn't skip the key.
memo_b[a] = true
-- Note: i > j if `step` is positive; i < j if `step` is negative. Otherwise, the range is empty.
end
local signed_k = k * step
-- If include_mt is set, check the metatables are equivalent.
if signed_k >= signed_i and signed_k <= signed_j and (k - norm_i) % norm_step == 0 then
if (
t_new[k] = func(k, t[k])
include_mt and
-- Otherwise, add the existing value if `generate` is set.
not is_equivalent(getmetatable(a), getmetatable(b), memo, true)
elseif generate then
) then
t_new[k] = t[k]
return false
end
-- Fast check: loop over keys in a, checking if an equivalent value exists at the same key in b. Any tables-as-keys are set aside for the laborious check instead.
local tablekeys_a, tablekeys_b, kb
for ka, va in next, a do
if type(ka) == "table" then
if not tablekeys_a then
tablekeys_a = {[ka] = va}
else
tablekeys_a[ka] = va
end
else
local vb = rawget(b, ka)
-- Faster to avoid recursion if possible, as we know va is not nil.
if vb == nil or not is_equivalent(va, vb, memo, include_mt) then
return false
end
end
-- Iterate over b simultaneously (to check it's the same size and to grab any tables-as-keys for the laborious check), but also separately (since it might iterate in a different order, as this is unpredictable in Lua).
local vb
kb, vb = next(b, kb)
-- Fail if b runs out of key/value pairs too early.
if kb == nil then
return false
elseif type(kb) == "table" then
if not tablekeys_b then
tablekeys_b = {[kb] = vb}
else
tablekeys_b[kb] = vb
end
end
end
end
end
-- Fail if there are too many key/value pairs in b.
return t_new
if next(b, kb) ~= nil then
return false
-- If tablekeys_a == tablekeys_b they must be both nil, meaning there are no tables-as-keys to check, so success.
elseif tablekeys_a == tablekeys_b then
return true
-- If only one them exists, then the tables can't be equivalent.
elseif not (tablekeys_a and tablekeys_b) then
return false
end
-- Laborious check: for each table-as-key in tablekeys_a, loop over tablekeys_b looking for an equivalent key/value pair.
for ka, va in next, tablekeys_a do
local kb
while true do
local vb
kb, vb = next(tablekeys_b, kb)
-- Fail if no equivalent is found.
if kb == nil then
return false
elseif (
is_equivalent(ka, kb, memo, include_mt) and
is_equivalent(va, vb, memo, include_mt)
) then
-- Remove match to prevent double-matching (and for speed).
tablekeys_b[kb] = nil
break
end
end
end
-- Success if tablekeys_b is now empty.
return next(tablekeys_b) == nil
end
end


--[==[
--[==[
Recursively compare two values that may be tables, and returns true if all key-value pairs are structurally equivalent. Note that this handles arbitrary nesting of subtables (including recursive nesting) to any depth, for keys as well as values.
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
 
`v` is the value at index `k`), replacing the relevant values with the result. For example,
If `include_mt` is true, then metatables are also compared.]==]
{apply(array, function(_, v) return 2 * v end)} will double each member of the array.
function export.deepEquals(a, b, include_mt)
return is_equivalent(a, b, {}, include_mt)
end
end
 
do
local function get_nested(a, b, ...)
if a == nil then
return nil
elseif ... ~= nil then
return get_nested(a[b], ...)
end
return a[b]
end
 
--[==[
Given a table and an arbitrary number of keys, will successively access subtables using each key in turn, returning the value at the final key. For example, if {t} is { {[1] = {[2] = {[3] = "foo"}}}}, {export.getNested(t, 1, 2, 3)} will return {"foo"}.
 
If no subtable exists for a given key value, returns nil, but will throw an error if a non-table is found at an intermediary key.
]==]
function export.getNested(a, ...)
if a == nil or ... == nil then
error("Must provide a table and at least one key.")
end
return get_nested(a, ...)
end
end
 
do
local function set_nested(a, b, c, ...)
if ... == nil then
a[c] = b
return
end
local t = a[c]
if t == nil then
t = {}
a[c] = t
end
return set_nested(t, b, ...)
end
 
--[==[
Given a table, value and an arbitrary number of keys, will successively access subtables using each key in turn, and sets the value at the final key. For example, if {t} is { {} }, {export.setNested(t, "foo", 1, 2, 3)} will modify {t} to { {[1] = {[2] = {[3] = "foo"} } } }.
 
If no subtable exists for a given key value, one will be created, but the function will throw an error if a non-table value is found at an intermediary key.
 
Note: the parameter order (table, value, keys) differs from functions like rawset, because the number of keys can be arbitrary. This is to avoid situations where an additional argument must be appended to arbitrary lists of variables, which can be awkward and error-prone: for example, when handling variable arguments ({{lua|...}}) or function return values.
]==]
function export.setNested(a, b, ...)
if a == nil or b == nil or ... == nil then
error("Must provide a table, value and at least one key.")
end
return set_nested(a, b, ...)
end
end
 
--[==[
Given a list and a value to be found, return true if the value is in the array
portion of the list. Comparison is by value, using `deepEquals`.
]==]
function export.contains(list, x, options)
local check = _check("contains", "table")
check(1, list)
check(3, options, true)
 
if options and options.key then
x = options.key(x)
end
for _, v in ipairs(list) do
if options and options.key then
v = options.key(v)
end
if export.deepEquals(v, x) then return true end
end
return false
end
 
--[==[
Given a general table and a value to be found, return true if the value is in
either the array or hashmap portion of the table. Comparison is by value, using
`deepEquals`.
 
NOTE: This used to do shallow comparison by default and accepted a third
"deepCompare" param to do deep comparison. This param is still accepted but now
ignored.
]==]
function export.tableContains(tbl, x)
checkType("tableContains", 1, tbl, "table")
for _, v in pairs(tbl) do
if export.deepEquals(v, x) then return true end
end
return false
end
 
--[==[
Given a `list` and a `new_item` to be inserted, append the value to the end of the list if not already present
(or insert at an arbitrary position, if `options.pos` is given; see below). Comparison is by value, using {deepEquals}.


`options` is an optional table of additional options to control the behavior of the operation. The following options are
Optional arguments:
recognized:
* `i`: start index; negative values count from the end of the array
* `pos`: Position at which insertion happens (i.e. before the existing item at position `pos`).
* `j`: end index; negative values count from the end of the array
* `key`: Function of one argument to return a comparison key, as with {deepEquals}. The key function is applied to both
* `step`: step increment
`item` and the existing item in `list` to compare against, and the comparison is done against the results.
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
This is useful when inserting a complex structure into an existing list while avoiding duplicates.
backwards and by how much, based on these inputs (see examples below for default behaviours).
* `combine`: Function of three arguments (the existing item, the new item and the position, respectively) to combine an
existing item with `new_item`, when `new_item` is found in `list`. If unspecified, the existing item is
left alone.


Return {false} if entry already found, {true} if inserted.
Examples:
 
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
For compatibility, `pos` can be specified directly as the third argument in place of `options`, but this is not
# step=-1 results in backward iteration from the end to the start in steps of 1.
recommended for new code.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
 
# j=-3 results in forward iteration from the start to the 3rd last index.
NOTE: This function is O(N) in the size of the existing list. If you use this function in a loop to insert several
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
items, you will get O(M*(M+N)) behavior, effectively O((M+N)^2). Thus it is not recommended to use this unless you are
function export.apply(t, func, i, j, step)
sure the total number of items will be small. (An alternative for large lists is to insert all the items without
return replace(t, func, i, j, step, false)
checking for duplicates, and use {removeDuplicates()} at the end.)
]==]
function export.insertIfNot(list, new_item, options)
local check = _check("insertIfNot")
check(1, list, "table")
check(3, options, {"table", "number"}, true)
 
if type(options) == "number" then
options = {pos = options}
end
if options and options.combine then
local new_item_key
-- Don't use options.key and options.key(new_item) or new_item in case the key is legitimately false or nil.
if options.key then
new_item_key = options.key(new_item)
else
new_item_key = new_item
end
for i, item in ipairs(list) do
local item_key
if options.key then
item_key = options.key(item)
else
item_key = item
end
if export.deepEquals(item_key, new_item_key) then
local retval = options.combine(item, new_item, i)
if retval ~= nil then
list[i] = retval
end
return false
end
end
elseif export.contains(list, new_item, options) then
return false
end
if options and options.pos then
insert(list, options.pos, new_item)
else
insert(list, new_item)
end
end
 
--[==[
Finds key for specified value in a given table. Roughly equivalent to reversing the key-value pairs in the table:
* {reversed_table = { [value1] = key1, [value2] = key2, ... }}
and then returning {reversed_table[valueToFind]}.
 
The value can only be a string or a number (not nil, a boolean, a table, or a function).
 
Only reliable if there is just one key with the specified value. Otherwise, the function returns the first key found,
and the output is unpredictable.
]==]
function export.keyFor(t, valueToFind)
local check = _check("keyFor")
check(1, t, "table")
check(2, valueToFind, {"string", "number"})
 
for key, value in pairs(t) do
if value == valueToFind then
return key
end
end
 
return nil
end
 
do
-- The default sorting function used in export.keysToList if no keySort is defined.
local function defaultKeySort(key1, key2)
-- "number" < "string", so numbers will be sorted before strings.
local type1, type2 = type(key1), type(key2)
if type1 ~= type2 then
return type1 < type2
end
-- string_sort fixes a bug in < whereby all codepoints above U+FFFF are treated as equal.
return string_sort(key1, key2)
end
end


--[==[
--[==[
Return a list of the keys in a table, sorted using either the default table.sort function or a custom keySort function.
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
If there are only numerical keys, numKeys is probably more efficient.
`v` is the value at index `k`), and return a shallow copy of the original array with the relevant values replaced. For example,
]==]
{generate(array, function(_, v) return 2 * v end)} will return a new array in which each value has been doubled.
function export.keysToList(t, keySort, checked)
if not checked then
local check = _check("keysToList")
check(1, t, "table")
check(2, keySort, "function", true)
end
 
local list, i = {}, 0
for key in pairs(t) do
i = i + 1
list[i] = key
end
 
-- Use specified sort function, or otherwise defaultKeySort.
sort(list, keySort or defaultKeySort)
 
return list
end
keys_to_list = export.keysToList
end
 
--[==[
Iterates through a table, with the keys sorted using the keysToList function. If there are only numerical keys,
sparseIpairs is probably more efficient.
]==]
function export.sortedPairs(t, keySort)
local check = _check("keysToList")
check(1, t, "table")
check(2, keySort, "function", true)
 
local list, i = keys_to_list(t, keySort, true), 0
 
return function()
i = i + 1
local key = list[i]
if key ~= nil then
return key, t[key]
end
end
end
 
do
local function iter(t, i)
i = i - 1
if i > 0 then
return i, t[i]
end
end
 
function export.reverseIpairs(t)
checkType("reverseIpairs", 1, t, "table")
-- Not safe to use #t, as it can be unpredictable if there is a hash part.
local i = 0
repeat
i = i + 1
until t[i] == nil
return iter, t, i
end
end
 
local function getIteratorValues(i, j , s, list)
i = (i and i < 0 and #list - i + 1) or i or (s and s < 0 and #list) or 1
j = (j and j < 0 and #list - j + 1) or j or (s and s < 0 and 1) or #list
s = s or (j < i and -1) or 1
if (
i == 0 or i % 1 ~= 0 or
j == 0 or j % 1 ~= 0 or
s == 0 or s % 1 ~= 0
) then
error("Arguments i, j and s must be non-zero integers.")
end
return i, j, s
end
 
--[==[
Given an array `list` and function `func`, iterate through the array applying {func(r, k, v)}, and returning the result,
where `r` is the value calculated so far, `k` is an index, and `v` is the value at index `k`. For example,
{reduce(array, function(a, b) return a + b end)} will return the sum of `array`.
 
Optional arguments:
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `s`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).
 
Examples:
# No values for i, j or s results in forward iteration from the start to the end in steps of 1 (the default).
# s=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. s=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, s=-1 results in backward iteration from the end to the 3rd last index.
Note: directionality generally only matters for `reduce`, but values of s > 1 (or s < -1) still affect the return value
of `apply`.
]==]
 
function export.reduce(list, func, i, j, s)
i, j, s = getIteratorValues(i, j , s, list)
local ret = list[i]
for k = i + s, j, s do
ret = func(ret, k, list[k])
end
return ret
end


--[==[
Optional arguments:
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
* `i`: start index; negative values count from the end of the array
`v` is the value at index `k`), and return an array of the resulting values. For example,
* `j`: end index; negative values count from the end of the array
{apply(array, function(a) return 2*a end)} will return an array where each member of `array` has been doubled.
* `step`: step increment
 
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
Optional arguments:
backwards and by how much, based on these inputs (see examples below for default behaviours).
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `s`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).


Examples:
Examples:
# No values for i, j or s results in forward iteration from the start to the end in steps of 1 (the default).
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# s=-1 results in backward iteration from the end to the start in steps of 1.
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. s=-1).
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, s=-1 results in backward iteration from the end to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
Note: directionality makes the most difference for `reduce`, but values of s > 1 (or s < -1) still affect the return
function export.generate(t, func, i, j, step)
value of `apply`.
return replace(t, func, i, j, step, true)
]==]
function export.apply(list, func, i, j, s)
local modified_list = export.deepcopy(list)
i, j, s = getIteratorValues(i, j , s, modified_list)
for k = i, j, s do
modified_list[k] = func(k, modified_list[k])
end
end
return modified_list
end
end


Line 738: Line 218:
* `i`: start index; negative values count from the end of the array
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `s`: step increment
* `step`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).
backwards and by how much, based on these inputs (see examples below for default behaviours).


Examples:
Examples:
# No values for i, j or s results in forward iteration from the start to the end in steps of 1 (the default).
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# s=-1 results in backward iteration from the end to the start in steps of 1.
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. s=-1).
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, s=-1 results in backward iteration from the end to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
]==]
function export.all(t, func, i, j, step)
function export.all(list, func, i, j, s)
i, j, step = getIteratorValues(i, j, step, table_len(t))
i, j, s = getIteratorValues(i, j , s, list)
for k = i, j, step do
local ret = true
if not func(k, t[k]) then
for k = i, j, s do
return false
ret = ret and not not (func(k, list[k]))
end
if not ret then break end
end
end
return ret
return true
end
end


Line 766: Line 245:
* `i`: start index; negative values count from the end of the array
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `s`: step increment
* `step`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).
backwards and by how much, based on these inputs (see examples below for default behaviours).


Examples:
Examples:
# No values for i, j or s results in forward iteration from the start to the end in steps of 1 (the default).
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# s=-1 results in backward iteration from the end to the start in steps of 1.
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. s=-1).
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, s=-1 results in backward iteration from the end to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
]==]
function export.any(t, func, i, j, step)
function export.any(list, func, i, j, s)
i, j, step = getIteratorValues(i, j, step, table_len(t))
i, j, s = getIteratorValues(i, j , s, list)
for k = i, j, step do
local ret = false
if not not (func(k, t[k])) then
for k = i, j, s do
return true
ret = ret or not not (func(k, list[k]))
end
if ret then break end
end
end
return ret
return false
end
end


Line 793: Line 271:
Options:
Options:
* `conj`: Conjunction to use; defaults to {"and"}.
* `conj`: Conjunction to use; defaults to {"and"}.
* `italicizeConj`: Italicize conjunction: for [[Module:also]]
* `punc`: Punctuation to use; default to {","}.
* `dontTag`: Don't tag the serial comma and serial {"and"}. For error messages, in which HTML cannot be used.
* `dontTag`: Don't tag the serial comma and serial {"and"}. For error messages, in which HTML cannot be used.
]==]
* `dump`: Each item will be serialized with {mw.dumpObject}. For warnings and error messages.]==]
function export.serialCommaJoin(seq, options)
function export.serialCommaJoin(seq, options)
local check = _check("serialCommaJoin", "table")
-- If the `dump` option is set, determine the table length as part of the
check(1, seq)
-- dump loop, instead of calling `table_len` separately.
check(2, options, true)
local length
 
if options and options.dump then
local length = #seq
local i, item = 1, seq[1]
 
if item ~= nil then
if not options then
local dumped = {}
options = {}
repeat
end
dumped[i] = dump(item)
 
i = i + 1
local conj
item = seq[i]
if length > 1 then
until item == nil
conj = options.conj or "and"
seq = dumped
if options.italicizeConj then
conj = "''" .. conj .. "''"
end
end
length = i - 1
else
length = table_len(seq)
end
end


Line 818: Line 297:
return ""
return ""
elseif length == 1 then
elseif length == 1 then
return seq[1] -- nothing to join
return seq[1]
elseif length == 2 then
return seq[1] .. " " .. conj .. " " .. seq[2]
else
local comma = options.dontTag and "," or "<span class=\"serial-comma\">,</span>"
conj = options.dontTag and " " .. conj .. " " or "<span class=\"serial-and\"> " .. conj .. "</span> "
return concat(seq, ", ", 1, length - 1) ..
comma .. conj .. seq[length]
end
end
end


--[==[
local conj = options and options.conj
Concatenate all values in the table that are indexed by a number, in order.
if conj == nil then
* {sparseConcat{ a, nil, c, d }}  =>  {"acd"}
conj = "and"
* {sparseConcat{ nil, b, c, d }}  =>  {"bcd"}
end
]==]
function export.sparseConcat(t, sep, i, j)
local list = {}


local list_i = 0
if length == 2 then
for _, v in export.sparseIpairs(t) do
return seq[1] .. " " .. conj .. " " .. seq[2]
list_i = list_i + 1
list[list_i] = v
end
end


return concat(list, sep, i, j)
local punc, dont_tag
end
if options then
 
punc = options.punc
--[==[
if punc == nil then
Values of numeric keys in array portion of table are reversed: { { "a", "b", "c" }} -> { { "c", "b", "a" }}
punc = ","
]==]
end
function export.reverse(t)
dont_tag = options.dontTag
checkType("reverse", 1, t, "table")
else
-- Not safe to use #t, as it can be unpredictable if there is a hash part.
punc = ","
local ret, base = {}, 0
repeat
base = base + 1
until t[base] == nil
for i = base - 1, 1, -1 do
ret[base - i] = t[i]
end
end
return ret
end


function export.reverseConcat(t, sep, i, j)
local comma
return concat(export.reverse(t), sep, i, j)
if dont_tag then
end
comma = "" -- since by default the serial comma doesn't display, when we can't tag we shouldn't display it.
 
conj = " " .. conj .. " "
--[==[
else
Invert an array. For example, {invert({ "a", "b", "c" })} -> { { a = 1, b = 2, c = 3 }}
comma = "<span class=\"serial-comma\">" .. punc .. "</span>"
]==]
conj = "<span class=\"serial-and\"> " .. conj .. "</span> "
function export.invert(array)
checkType("invert", 1, array, "table")
 
local map = {}
for i, v in ipairs(array) do
map[v] = i
end
end


return map
return concat(seq, punc .. " ", 1, length - 1) .. comma .. conj .. seq[length]
end
end


--[==[
--[==[
Convert `list` (a table with a list of values) into a set (a table where those values are keys instead). This is a useful
A function which works like `table.concat`, but respects any `__index` metamethod. This is useful for data loaded via `mw.loadData`.]==]
way to create a fast lookup table, since looking up a table key is much, much faster than iterating over the whole list
function export.concat(t, sep, i, j)
to see if it contains a given value.
local list, k = {}, 0
 
By default, each item is given the value true. If the optional parameter `value` is a function or functor, then the value
for each item is determined by calling it with the item key as the first parameter, plus any additional arguments passed
to {listToSet}; if value is anything else, then it is used as the fixed value for every item.
]==]
function export.listToSet(list, value, ...)
checkType("listToSet", 1, list, "table")
local set, i = {}, 0
if value == nil then
value = true
elseif is_callable(value) then
-- Separate loop avoids an "is callable" lookup each iteration.
while true do
i = i + 1
local item = list[i]
if item == nil then
return set
end
set[item] = value(item, ...)
end
end
while true do
while true do
i = i + 1
k = k + 1
local item = list[i]
local v = t[k]
if item == nil then
if v == nil then
return set
return concat(list, sep, i, j)
end
end
set[item] = value
list[k] = v
end
end
end
end


--[==[
--[==[
Return true if all keys in the table are consecutive integers starting at 1.
Add a list of aliases for a given key to a table. The aliases must be given as a table.]==]
]==]
function export.isArray(t)
checkType("isArray", 1, t, "table")
 
local i = 0
for _ in pairs(t) do
i = i + 1
if t[i] == nil then
return false
end
end
return true
end
 
--[==[
Add a list of aliases for a given key to a table. The aliases must be given as a table.
]==]
function export.alias(t, k, aliases)
function export.alias(t, k, aliases)
for _, alias in pairs(aliases) do
for _, alias in pairs(aliases) do
Line 940: Line 354:
end
end


return export
local mt = {}
 
function mt:__index(k)
local submodule = safe_require("Module:table/" .. k)
self[k] = submodule
return submodule
end
 
return setmetatable(export, mt)

Latest revision as of 17:47, 4 November 2025



local export = {}

--[==[ intro:
This module provides functions for dealing with Lua tables. All of them, except for two helper functions, take a table
as their first argument.

Some functions are available as methods in the arrays created by [[Module:array]].

Functions by what they do:
* Create a new table:
** `shallowCopy`, `deepCopy`, `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`, `invert`, `listToSet`
* Create an array:
** `removeDuplicates`, `numKeys`, `compressSparseArray`, `keysToList`, `reverse`
* Return information about the table:
** `size`, `length`, `contains`, `isArray`, `deepEquals`
* Treat the table as an array (that is, operate on the values in the array portion of the table: values indexed by
  consecutive integers starting at {1}):
** `removeDuplicates`, `length`, `contains`, `serialCommaJoin`, `reverseIpairs`, `reverse`, `invert`, `listToSet`, `isArray`
* Treat a table as a sparse array (that is, operate on values indexed by non-consecutive integers):
** `numKeys`, `maxIndex`, `compressSparseArray`, `sparseConcat`, `sparseIpairs`
* Generate an iterator:
** `sparseIpairs`, `sortedPairs`, `reverseIpairs`
* Other functions:
** `sparseConcat`, `serialCommaJoin`, `reverseConcat`

The original version was a copy of {{w|Module:TableTools}} on Wikipedia via [[c:Module:TableTools|Module:TableTools]] on
Commons, but in the course of time this module has been almost completely rewritten, with many new functions added. The
main legacy of this is the use of camelCase for function names rather than snake_case, as is normal in the English
Wiktionary.
]==]

local load_module = "Module:load"
local math_module = "Module:math"

local table = table

local concat = table.concat
local dump = mw.dumpObject
local ipairs = ipairs
local ipairs_default_iter = ipairs{export}
local next = next
local pairs = pairs
local require = require
local select = select
local signed_index -- defined as export.signedIndex
local table_len -- defined as export.length
local type = type

--[==[
Loaders for functions in other modules, which overwrite themselves with the target function when called. This ensures modules are only loaded when needed, retains the speed/convenience of locally-declared pre-loaded functions, and has no overhead after the first call, since the target functions are called directly in any subsequent calls.]==]
local function is_integer(...)
	is_integer = require(math_module).is_integer
	return is_integer(...)
end

local function safe_require(...)
	safe_require = require(load_module).safe_require
	return safe_require(...)
end

--[==[
Given an array and a signed index, returns the true table index. If the signed index is negative, the array will be counted from the end, where {-1} is the highest index in the array; otherwise, the returned index will be the same. To aid optimization, the first argument may be a number representing the array length instead of the array itself; this is useful when the array length is already known, as it avoids recalculating it each time this function is called.]==]
function export.signedIndex(t, k)
	if not is_integer(k) then
		error("index must be an integer")
	end
	return k < 0 and (type(t) == "table" and table_len(t) or t) + k + 1 or k
end
signed_index = export.signedIndex

--[==[
An iterator which works like `pairs`, but ignores any `__pairs` metamethod.]==]
function export.rawPairs(t)
	return next, t, nil
end

--[==[
An iterator which works like `ipairs`, but ignores any `__ipairs` metamethod.]==]
function export.rawIpairs(t)
	return ipairs_default_iter, t, 0
end

--[==[
This returns the length of a table, or the first integer key n counting from 1 such that t[n + 1] is nil. It is a more reliable form of the operator `#`, which can become unpredictable under certain circumstances due to the implementation of tables under the hood in Lua, and therefore should not be used when dealing with arbitrary tables. `#` also does not use metamethods, so will return the wrong value in cases where it is desirable to take these into account (e.g. data loaded via `mw.loadData`). If `raw` is set, then metamethods will be ignored, giving the true table length.

For arrays, this function is faster than `export.size`.]==]
function export.length(t, raw)
	local n = 0
	if raw then
		for i in ipairs_default_iter, t, 0 do
			n = i
		end
		return n
	end
	repeat
		n = n + 1
	until t[n] == nil
	return n - 1
end
table_len = export.length

local function getIteratorValues(i, j , step, t_len)
	i, j = i and signed_index(t_len, i), j and signed_index(t_len, j)
	if step == nil then
		i, j = i or 1, j or t_len
		return i, j, j < i and -1 or 1
	elseif step == 0 or not is_integer(step) then
		error("step must be a non-zero integer")
	elseif step < 0 then
		return i or t_len, j or 1, step
	end
	return i or 1, j or t_len, step
end

--[==[
Given an array `list` and function `func`, iterate through the array applying {func(r, k, v)}, and returning the result,
where `r` is the value calculated so far, `k` is an index, and `v` is the value at index `k`. For example,
{reduce(array, function(a, _, v) return a + v end)} will return the sum of `array`.

Optional arguments:
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `step`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).

Examples:
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.reduce(t, func, i, j, step)
	i, j, step = getIteratorValues(i, j, step, table_len(t))
	local ret = t[i]
	for k = i + step, j, step do
		ret = func(ret, k, t[k])
	end
	return ret
end

do
	local function replace(t, func, i, j, step, generate)
		local t_len = table_len(t)
		-- Normalized i, j and step, based on the inputs.
		local norm_i, norm_j, norm_step = getIteratorValues(i, j, step, t_len)
		if norm_step > 0 then
			i, j, step = 1, t_len, 1
		else
			i, j, step = t_len, 1, -1
		end
		-- "Signed" variables are multiplied by -1 if `step` is negative.
		local t_new, signed_i, signed_j = generate and {} or t, norm_i * step, norm_j * step
		for k = i, j, step do
			-- Replace the values iff they're within the i to j range and `step` wouldn't skip the key.
			-- Note: i > j if `step` is positive; i < j if `step` is negative. Otherwise, the range is empty.
			local signed_k = k * step
			if signed_k >= signed_i and signed_k <= signed_j and (k - norm_i) % norm_step == 0 then
				t_new[k] = func(k, t[k])
			-- Otherwise, add the existing value if `generate` is set.
			elseif generate then
				t_new[k] = t[k]
			end
		end
		return t_new
	end

	--[==[
	Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
	`v` is the value at index `k`), replacing the relevant values with the result. For example,
	{apply(array, function(_, v) return 2 * v end)} will double each member of the array.

	Optional arguments:
	* `i`: start index; negative values count from the end of the array
	* `j`: end index; negative values count from the end of the array
	* `step`: step increment
	These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
	backwards and by how much, based on these inputs (see examples below for default behaviours).

	Examples:
	# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
	# step=-1 results in backward iteration from the end to the start in steps of 1.
	# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
	# j=-3 results in forward iteration from the start to the 3rd last index.
	# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
	function export.apply(t, func, i, j, step)
		return replace(t, func, i, j, step, false)
	end

	--[==[
	Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
	`v` is the value at index `k`), and return a shallow copy of the original array with the relevant values replaced. For example,
	{generate(array, function(_, v) return 2 * v end)} will return a new array in which each value has been doubled.

	Optional arguments:
	* `i`: start index; negative values count from the end of the array
	* `j`: end index; negative values count from the end of the array
	* `step`: step increment
	These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
	backwards and by how much, based on these inputs (see examples below for default behaviours).

	Examples:
	# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
	# step=-1 results in backward iteration from the end to the start in steps of 1.
	# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
	# j=-3 results in forward iteration from the start to the 3rd last index.
	# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
	function export.generate(t, func, i, j, step)
		return replace(t, func, i, j, step, true)
	end
end

--[==[
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
`v` is the value at index `k`), and returning whether the function is true for all iterations.

Optional arguments:
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `step`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).

Examples:
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.all(t, func, i, j, step)
	i, j, step = getIteratorValues(i, j, step, table_len(t))
	for k = i, j, step do
		if not func(k, t[k]) then
			return false
		end
	end
	return true
end

--[==[
Given an array `list` and function `func`, iterate through the array applying {func(k, v)} (where `k` is an index, and
`v` is the value at index `k`), and returning whether the function is true for at least one iteration.

Optional arguments:
* `i`: start index; negative values count from the end of the array
* `j`: end index; negative values count from the end of the array
* `step`: step increment
These must be non-zero integers. The function will determine where to iterate from, whether to iterate forwards or
backwards and by how much, based on these inputs (see examples below for default behaviours).

Examples:
# No values for i, j or step results in forward iteration from the start to the end in steps of 1 (the default).
# step=-1 results in backward iteration from the end to the start in steps of 1.
# i=7, j=3 results in backward iteration from indices 7 to 3 in steps of 1 (i.e. step=-1).
# j=-3 results in forward iteration from the start to the 3rd last index.
# j=-3, step=-1 results in backward iteration from the end to the 3rd last index.]==]
function export.any(t, func, i, j, step)
	i, j, step = getIteratorValues(i, j, step, table_len(t))
	for k = i, j, step do
		if not not (func(k, t[k])) then
			return true
		end
	end
	return false
end

--[==[
Joins an array with serial comma and serial conjunction, normally {"and"}. An improvement on {mw.text.listToText},
which doesn't properly handle serial commas.

Options:
* `conj`: Conjunction to use; defaults to {"and"}.
* `punc`: Punctuation to use; default to {","}.
* `dontTag`: Don't tag the serial comma and serial {"and"}. For error messages, in which HTML cannot be used.
* `dump`: Each item will be serialized with {mw.dumpObject}. For warnings and error messages.]==]
function export.serialCommaJoin(seq, options)
	-- If the `dump` option is set, determine the table length as part of the
	-- dump loop, instead of calling `table_len` separately.
	local length
	if options and options.dump then
		local i, item = 1, seq[1]
		if item ~= nil then
			local dumped = {}
			repeat
				dumped[i] = dump(item)
				i = i + 1
				item = seq[i]
			until item == nil
			seq = dumped
		end
		length = i - 1
	else
		length = table_len(seq)
	end

	if length == 0 then
		return ""
	elseif length == 1 then
		return seq[1]
	end

	local conj = options and options.conj
	if conj == nil then
		conj = "and"
	end

	if length == 2 then
		return seq[1] .. " " .. conj .. " " .. seq[2]
	end

	local punc, dont_tag
	if options then
		punc = options.punc
		if punc == nil then
			punc = ","
		end
		dont_tag = options.dontTag
	else
		punc = ","
	end

	local comma
	if dont_tag then
		comma = "" -- since by default the serial comma doesn't display, when we can't tag we shouldn't display it.
		conj = " " .. conj .. " "
	else
		comma = "<span class=\"serial-comma\">" .. punc .. "</span>"
		conj = "<span class=\"serial-and\"> " .. conj .. "</span> "
	end

	return concat(seq, punc .. " ", 1, length - 1) .. comma .. conj .. seq[length]
end

--[==[
A function which works like `table.concat`, but respects any `__index` metamethod. This is useful for data loaded via `mw.loadData`.]==]
function export.concat(t, sep, i, j)
	local list, k = {}, 0
	while true do
		k = k + 1
		local v = t[k]
		if v == nil then
			return concat(list, sep, i, j)
		end
		list[k] = v
	end
end

--[==[
Add a list of aliases for a given key to a table. The aliases must be given as a table.]==]
function export.alias(t, k, aliases)
	for _, alias in pairs(aliases) do
		t[alias] = t[k]
	end
end

local mt = {}

function mt:__index(k)
	local submodule = safe_require("Module:table/" .. k)
	self[k] = submodule
	return submodule
end

return setmetatable(export, mt)