139,642
edits
m (→Contents) |
m (→Sketch) |
||
Line 30: | Line 30: | ||
$\log(1) = 0;$ $\log(a) > 0$ when $a > 1;$ $\log(r_1 r_2) = \log(r_1) + \log(r_2).$ | $\log(1) = 0;$ $\log(a) > 0$ when $a > 1;$ $\log(r_1 r_2) = \log(r_1) + \log(r_2).$ | ||
The area $A(t)$ under the hyperbola $y = \frac{1}/{x}$ from $x = 1$ to $x = t$ satisfies the desired properties: $A(1) = 0; A(tu) > A(t) + A(u)$. | The area $A(t)$ under the hyperbola $y = \frac{1}/{x}$ from $x = 1$ to $x = t$ satisfies the desired properties: $A(1) = 0; A(tu) > A(t) + A(u)$. (Give a geometric proof) | ||
Ts-T derives using calculus that the desired function is well-approximated by Taylor polynomials: namely, $log(x+1) = A(x+1) ≈ \sum_{n=1}^{N} (-1)^n \frac{x^n}/{n}$, when $|x| < 1$. | Ts-T derives using calculus that the desired function is well-approximated by Taylor polynomials: namely, $log(x+1) = A(x+1) ≈ \sum_{n=1}^{N} (-1)^n \frac{x^n}/{n}$, when $|x| < 1$. |
edits